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Abstract

We describe three approaches to enabling a severely com-
putationally limited embedded scheduler to consider a small
number of alternative activities based on resource availabil-
ity. We consider the case where the scheduler is so computa-
tionally limited that it cannot backtrack search. The first two
approaches precompile resource checks (called guards) that
only enable selection of a preferred alternative activity if suf-
ficient resources are estimated to be available to schedule the
remaining activities. The third approach mimics backtracking
by invoking the scheduler multiple times with the alternative
activities. We present an evaluation of these techniques on
Mars mission scenarios (called sol types) from NASA’s next
planetary rover where these techniques are being evaluated
for inclusion in an onboard scheduler.

Introduction
Embedded schedulers must often operate with very limited
computational resources. This makes it challenging to per-
form even simple schedule optimization when doing so may
use resources needed for yet unscheduled activities.

In this paper, we present three algorithms to enable such a
scheduler to consider a very limited type of preferred ac-
tivity while still scheduling all required, hereafter called
mandatory, activities. Preferred activities are grouped into
switch groups, i.e. sets of activities where each activity in
the set is called a switch case, and exactly one of the activ-
ities in the set must be scheduled. They differ only by how
much time, energy, and data volume they consume and the
goal is for the scheduler to schedule the most desirable ac-
tivity (also the most resource consuming activity) without
sacrificing any other mandatory activity.

The target scheduler is a non-backtracking scheduler
baselined for flight onboard the NASA Mars 2020 planetary
rover (Rabideau and Benowitz 2017) that schedules in pri-
ority first order and never removes or moves an activity after
it is placed during a single run of the scheduler. Because
the scheduler does not backtrack, it is challenging to ensure
that scheduling a consumptive switch case will not use too
many resources and therefore prevent a later (in terms of
scheduling order, not necessarily time order) mandatory ac-
tivity from being scheduled.
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The onboard scheduler is designed to make the rover
more robust to run-time variations by rescheduling multiple
times during execution (Gaines et al. 2016a). If an activity
ends earlier or later than expected, then rescheduling will al-
low the scheduler to consider changes in resource consump-
tion and reschedule accordingly. Our algorithms to schedule
switch groups must also be robust to varying execution du-
rations and rescheduling.

The remainder of the paper is organized as follows. First
we mathematically show why it is impractical to have a
backtracking scheduler given the CPU limitations. Second,
we explain the problem specification. Third, we describe two
guard approaches to schedule switch groups which involve
reserving enough resources to ensure all later required activ-
ities can be scheduled. Fourth, we describe another approach
which emulates very limited backtracking under certain con-
ditions by re-invoking the scheduler multiple times. Finally,
we present empirical results to evaluate and compare these
three approaches, and explain which method was chosen to
be infused into the Mars 2020 onboard scheduler.

Scheduler Runtime Limitations
The target scheduler has extremely limited CPU resources
available1 and a conservative estimated runtime of 60 sec-
onds. To explain how much the estimated runtime would in-
crease if the scheduler was allowed backtrack, consider the
search trees explored by a non-backtracking and backtrack-
ing scheduler. The non-backtracking scheduler explores a
tree T1 with branching factor B1 = 1 and height of hA where
hA is also the number of activities to be scheduled. The
backtracking scheduler considers a tree T2 with a branching
factor, B2, and height hA where B2 > 1. The total number
of nodes in each tree corresponds to the number of times the
scheduler will attempt to place an activity. Since the branch-
ing factor of T1 is 1, the total number of nodes in T1, given
by nT1

, is hA. The non-backtracking scheduler does not con-
sider further search to move activities once they have already

1The RAD750 processor used by the Mars 2020 rover has mea-
sured performance in the 200-300 MIPS range. In comparison a
2016 Intel Core i7 measured over 300,000 MIPS or over 1000 times
faster. Furthermore, the onboard scheduler is only allocated a por-
tion of the computing cycles onboard the RAD750 resulting com-
putation several thousand times slower than a typical laptop.



been placed. The total number of nodes in T2 is given by
Equation 1.

nT2
= 1 + B2 + B2

2 + ... + BhA
2 =

BhA+1
2 − 1

B2 − 1
(1)

A conservative runtime for a single iteration of M2020
scheduler is K = 2 seconds. This includes (Rabideau and
Benowitz 2017) computation of valid intervals for place-
ment, heuristic selection of a start time, scheduling of any
required preheat and maintenance activities and updating
of the wake/sleep activities of the rover (Chi, Chien, and
Agrawal 2019). The scheduler must schedule 30 activities
typically and 50 activities maximally for the Mars 2020 use
case. The total runtime of searching all nodes in T1 is given
by Equation 2.

RT1
= K × nT1

(2)
The runtime for a backtracking scheduler represented by

T2 is given by Equation 3

RT2 = K × nT2 = 2× BhA+1
2 − 1

B2 − 1
(3)

Figure 1 shows the predicted runtime growth with the in-
troduction of search even with modest increase in branching
factor (not the Y axis is log scale), This graphic highlights
that even a modest amount of search is impractical with the
extremely limited CPU resources 2 3.

Figure 1: Scheduler runtime versus branching factor using a
log scale.

Problem Definition
For the scheduling problem we adopt the definitions in (Ra-
bideau and Benowitz 2017). The scheduler is given a set of
activitiesA = {A1〈p1, d1, T1, D1, R1, e1, dv1,Γ1〉 . . .
An〈pn, dn, Tn, Dn, Rn, en, dvn,Γn〉} where:

2Note that the M2020 soft limit of 225 seconds runtime oc-
curs at B2 = 1.07 exploring 112 nodes or slightly more than twice
the minimum possible 50 nodes. B2 = 1.25 corresponds to a 134
minute runtime and B2 = 1.5 to a 2 week runtime.

3Indeed (Chi et al. 2019) describes the ground optimization of
scheduling parameters to address the no search limitations onboard.

• pi is the scheduling priority of activity Ai;

• di is the nominal, or predicted, duration of activity Ai;

• Ti is a set of start time windows [Tij start
, Tij end

]. . . [Tio start , Tio end
] for activity Ai;

• Di is a set of activity dependency constraints for activity
Ai where Ap → Aq means Aq must execute successfully
before Ap starts;

• Ri is the set of unit resources Ri1 . . . Rim that activity Ai

will use;

• ei and dvi are the rates at which the consumable resources
energy and data volume respectively are consumed by ac-
tivity Ai;

• Γi1 . . .Γir are non-depletable resources used such as se-
quence engines available or peak power for activity Ai.

Each activity in the aforementioned set of activities, A,
must belong to one of two subsets: a set of mandatory ac-
tivities AM , or a set of switch group activities AG, where
A = AM ∪ AG. Each activity in AG belongs to one and
only one switch group Gk where Gk ∈ G = {G1 . . . Gg}.

The activities within a switch group Gk, i.e. AGk
i , are

called switch cases of group Gk and they each vary from
each other by how many resources (time, energy, and data
volume) they consume.

Each activity is assigned a scheduling priority, which de-
termines the order in which the activities will be considered
for scheduling (Chi et al. 2019). The relative priorities of
switch cases within each switch group correspond to how
consumptive they are. That is, the highest priority switch
case in switch group Gk is also the most consumptive and
the lowest priority switch case is the least consumptive.

The scheduling process for each plan begins with the as-
sumption that the rover is alseep for the entire plan horizon.
Each time the scheduler places an activity, the rover must be
awake and the energy level declines (?). When scheduling
activities, the following plan-wide energy constraints must
also be satisfied:

• Minimum State of Charge (SOC). The state of charge, or
energy value, cannot dip below the Minimum SOC at any
point. If scheduling an activity would cause the energy
value to dip below the Minimum SOC, then that activity
will not be scheduled;

• Minimum Handover SOC. The state of charge cannot
be below the Minimum Handover SOC at the Handover
Time, in effect when the next schedule starts (e.g., the han-
dover SOC of the previous plan is the expected beginning
SOC for the subsequent schedule);

• Maximum SOC. The state of charge cannot exceed the
maximum allowed SOC value. Exceeding the Maximum
SOC hurts long term battery performance and the rover
will perform shunting.

Goal of Scheduler
The goal of the scheduler is to generate a schedule in which:

1. All mandatory activitiesAM are scheduled.



2. For each switch group Gk, one and only one activity
(switch case) in AGk

i must be scheduled. It is preferable
to schedule a more resource intensive switch case in each
switch group, but not at the expense of another mandatory
activity;

3. All temporal constraints are satisfied. For example, The
start times of the scheduled activities must fall in the cor-
responding time windows (T );

4. All individual activity temporal, resource, and depen-
dency constraints are satisfied (Ti, Di, Ri for each Ai);

5. All plan-wide energy constraints are satisfied.
During execution, the scheduler will be invoked multiple

times in response to deviation from expected resource con-
sumption, e.g. activities end earlier or later than expected
(Chi et al. 2018). Each time the scheduler is invoked, it must
generate a schedule which satisfies the conditions enumer-
ated above.

The presumption is that the problem as specified is valid,
that is to say that a schedule exists that includes all of the
mandatory activities as well as one switch case in each
switch group, respects all of the provided constraints, and
does not exceed available resources.

Switch Group Example
A specific application of switch groups involves using one
of the Mars 2020 instruments which takes images to fill
mosaics that may vary in size, e.g. 1x4, 2x4, or 4x4 mo-
saics. Taking larger mosaics might be preferable, but taking
a larger mosaic uses more time and energy, and produces
more data volume. These alternatives would be modeled by
a switch group as follows:

SwitchGroup =


Mosaic1x4 d = 100 sec
Mosaic2x4 d = 200 sec
Mosaic4x4 d = 400 sec

(4)

The desire is for the scheduler to schedule the activ-
ity Mosaic4x4 but if it does not fit then try scheduling
Mosaic2x4, and eventually try Mosaic1x4 if the other two
fail to schedule. It is not worth scheduling a more consump-
tive switch case if doing so will prevent a future lower pri-
ority mandatory activity from being scheduled due to lack
of resources. Because our computationally limited sched-
uler cannot search or backtrack, it is a challenge to predict if
a higher level switch case will be able to fit in the schedule
without consuming resources that will cause another manda-
tory activity to be forced out of the schedule.

Consider the example in Figure 2 where the switch group
consists of activities B1, B2, and B3 and dB3 > dB2 > dB1.
Each activity in this example also has one start time window
from Tistart to Tiend

.
B3 is the most resource intensive and has the highest pri-

ority within the switch group so the scheduler will first try
scheduling B3. As shown in Figure 2a, scheduling B3 will
prevent placing activity C at a time satisfying its execution
constraints. So, B3 should not be scheduled.

The question might arise as to why switch groups cannot
simply be scheduled last in terms of scheduling order. This is

(a) Scheduling B3 first prevents activity C from
being scheduled within its start time window.

(b) B2 can be successfully scheduled without
dropping any other mandatory activities.

Figure 2: Challenge to Schedule Switch Cases.

difficult for several reasons: 1) we would like to avoid gaps
in the schedule which is most effectively done by scheduling
primarily left to right temporally, and 2) if another activity is
dependent on an activity in a switch group, then scheduling
the switch group last would introduce complications to en-
sure that the dependencies are satisfied. In what follows we
address methods to effectively schedule switch groups.

Guard Approaches
First we will discuss two guard methods to schedule switch
groups, the Fixed Point guard and the Sol Wide guard. Both
of these methods attempt to schedule switch cases by re-
serving enough time and energy to schedule the remaining
mandatory activities. For switch groups, this means that re-
sources will be reserved for the least resource consuming
activity since it is required to schedule exactly one activ-
ity in the switch group. The method through which both of
these guard approaches reserve enough time to schedule fu-
ture mandatory activities is the same. They differ in how they
ensure there is enough energy. While the Fixed Point guard
reserves enough energy at a single fixed time point, the Sol
Wide guard attempts to reserve sufficient energy by keeping
track of the energy balance in the entire plan, or sol.

In this discussion, we do not attempt to reserve data vol-
ume while computing the guards as it is not expected to be
as constraining of a resource as time or energy. We aim to
take data volume into account in future work.

Both the time and energy guards are calculated offline be-
fore execution occurs. Then, each time rescheduling occurs
during execution, the constraints given by both the time and
energy guards are applied to ensure that scheduling a higher
level switch case will not prevent a future mandatory ac-
tivity from being scheduled. If activities have ended suffi-
ciently early and freed up resources, then it may be possible
to reschedule with a more consumptive switch case.

Before we discuss how each guard approach uniquely re-
serves enough energy for remaining mandatory activities,
we will present how the Fixed Point and Sol Wide guards
both ensure enough time will be reserved to schedule re-
maining mandatory activities while attempting to schedule a



more resource consuming switch case.

Guarding for Time
First, we will discuss how the Fixed Point and Sol Wide
guards ensure enough time will be reserved to schedule re-
maining mandatory activities while attempting to schedule a
more resource consuming switch case.

If a preferred time, Tij preferred
, is specified for an activ-

ity, the scheduler will try to place an activity closest to its
preferred time while obeying all other constraints. Other-
wise, the scheduler will try to place the activity as early as
possible.

Each switch group in the set of activities used to create
a nominal schedule includes only the nominal, or least re-
source consuming switch case, and all activities take their
predicted duration. First, we generate a nominal schedule
and find the time at which the nominal switch case is sched-
uled to complete, as shown in Figure 3.

Figure 3: A, B1, C, and D are all mandatory activities in
the nominal schedule. TNominal is the time at which B1 is
scheduled to end.

We then manipulate the execution time constraints of the
more resource intensive switch cases, B2 and B3 in Figure
3, so that they are constrained to complete by TNominal as
shown in Equation 5. Thus, a more (time) resource consum-
ing switch case will not use up time from any remaining
lower priority mandatory activities. If an activity has more
than one start time window, then we only alter the one which
contains TNominal and remove the others. If a prior activ-
ity ends earlier than expected during execution and frees up
some time, then it may be possible to schedule a more con-
sumptive switch case while obeying the time guard given by
the altered execution time constraints.

TBij end
= TNominal − dBi (5)

Now we discuss how the guard methods differ in how they
reserve enough energy to ensure that scheduling a more con-
sumptive switch case will not prevent any remaining manda-
tory activity from being scheduled due to violations of the
Minimum SOC or Minimum Handover SOC constraint.

Fixed Point Guard Approach
Fixed Point Minimum State of Charge Guard The
Fixed Point method attempts to ensure that scheduling a
more resource consuming switch case will not violate the
Minimum SOC while scheduling any future mandatory ac-
tivities by reserving sufficient energy at a single, fixed point
in time, TNominal as shown in Figure 4. The guard value for
the Minimum SOC is the state of charge value at TNominal

while constructing the nominal schedule. When attempting

to schedule a more resource intensive switch case, a con-
straint is placed on the scheduler so that the energy cannot
fall below the Minimum SOC guard value at time TNominal.
If an activity ends early (and uses fewer resources than ex-
pected) during execution, it may be possible to satisfy this
guard while scheduling a more consumptive switch case.

Figure 4: A, B1, C, and D, are mandatory activities in the
nominal schedule. A constraint is placed so that the energy
cannot dip below Min SOC Guard V al at time TNominal

while trying to schedule a higher level switch case.

Fixed Point Handover State of Charge Guard The
Fixed Point method guards for the Minimum Handover SOC
by first calculating how much extra energy is left over in the
nominal schedule at handover time after scheduling all ac-
tivities, as shown in Figure 5.

Figure 5: A, B1, C, and D, are mandatory activities in the
nominal schedule. A constraint is placed so that the extra
energy a higher level switch case consumes cannot exceed
Energy Leftover.

Then, while attempting to place a more consumptive
switch case, a constraint is placed on the scheduler so that
the extra energy required by the switch case does not exceed
Energy Leftover from the nominal schedule as in Figure 5.
For example, if we have a switch group consisting of three
activities, B1, B2, and B3 and dB3 > dB2 > dB1 and each
switch case consumes e Watts of power, we must ensure that
the following inequality holds at the time the scheduler is
attempting to schedule a higher level switch case:

(dBi
× eBi

)− (dB1
× eB1

) ≥ Energy Leftover (6)

There may be more than one switch group in the sched-
ule. Each time a higher level switch case is scheduled, the
Energy Leftover value is decreased by the extra energy re-
quired to schedule it. When the scheduler tries to place a
switch case in another switch group, it will check against
the updated Energy Leftover.

Sol Wide Guard Approach
Sol Wide Handover State of Charge Guard The Sol
Wide handover SOC guard only schedules a more resource



consumptive switch case if doing so will not cause the en-
ergy to dip below the Handover SOC at handover time. First,
we use the nominal schedule to calculate how much en-
ergy is needed to schedule remaining mandatory activities.
Having a Maximum SOC constraint while calculating this
value may produce an inaccurate result since any energy that
would exceed the Maximum SOC would not be taken into
account. So, in order to have an accurate prediction of the
energy balance as activities are being scheduled, this value is
calculated assuming there is no Maximum SOC constraint.
The Maximum SOC constraint is only removed while com-
puting the guard offline to gain a clear understanding of the
energy balance but during execution it is enforced.

As shown in Figure 6, the energy needed to schedule the
remaining mandatory activities is the difference between the
energy level just after the nominal switch case has been
scheduled, call this E1, and after all activities have been
scheduled, call this energy level E2.

(a) E1 is the energy level of the nominal schedule with
no Maximum SOC constraint after all activities up to
and including the nominal switch case (A, D, B1) have
been scheduled.

(b) E2 is the energy level of the nominal schedule with
no Maximum SOC constraint after all activities in the
nominal schedule have been scheduled. The activities
were scheduled in the following order: A, D, B1, C, E.

Figure 6: Calculating Energy Needed to Schedule Remain-
ing Mandatory Activities.

Energy Needed = E1− E2 (7)
Then, a constraint is placed on the scheduler so that the

energy value after a higher level switch case is scheduled
must be at least:

Energy Level ≥Minimum Handover SOC

+Energy Needed
(8)

By placing this energy constraint, we hope to prevent
the energy level from falling under the Minimum Handover
SOC by the time all activities have been scheduled.

Sol Wide Minimum State of Charge Guard While we
ensure that the energy will not violate the minimum Han-
dover SOC by keeping track of the energy balance, it is pos-

sible that scheduling a longer switch case will cause the en-
ergy to fall below the Minimum SOC. To limit the chance of
this happening, we run a Monte Carlo simulatiom of execu-
tion offline while computing the sol wide energy guard. We
use Monte Carlo to determine if a mandatory activity was
not scheduled due to a longer switch case being scheduled
earlier. If this occurs in any of the Monte Carlo simulations,
then we increase the guard constraint in Equation 8. We first
find the times at which each mandatory activity was sched-
uled to finish in the nominal schedule. Then, we run a Monte
Carlo of execution with the input plan containing the guard
and all switch cases. Each Monte Carlo differs in how long
each activity takes to execute compared to its original pre-
dicted duration in the schedule. If a mandatory activity was
not executed in any of the Monte Carlo runs and a more re-
source consuming switch case was executed before the time
at which that mandatory activity was scheduled to complete
in the nominal schedule, then we increase the Sol Wide en-
ergy guard value in Equation 8 by a fixed amount. We aim
to compose a better heuristic to increase the guard value as
future work.

Multiple Scheduler Invocation Approach
The Multiple Scheduler Invocation (MSI) approach emu-
lates backtracking in a very limited context by reinvoking
the scheduler multiple times with the switch cases. MSI
does not require any precomputation offline before execu-
tion as with the guards, and instead reinvokes the scheduler
multiple times during execution. The scheduler reschedules
(e.g., when activities end early) with only the nominal switch
case as shown in Figure 7a until an MSI trigger is satisfied.
At this point, the scheduler is reinvoked multiple times, at
most once per switch case in each switch group. In the first
MSI invocation, the scheduler attempts to schedule the high-
est level switch case as shown in Figure 7b. If the result-
ing schedule does not contain all mandatory activities, then
the scheduler will attempt to schedule the next highest level
switch case, as in 7c, and so on. If none of the higher level
switch cases can be successfully scheduled then the sched-
ule is regenerated with the nominal switch case. If activities
have ended early by the time MSI is triggered and resulted
in more resources than expected, then the goal is for this
approach to generate a schedule with a more consumptive
switch case if it will fit (assuming nominal activity durations
for any activities that have not yet executed).

There are multiple factors that must be taken into consid-
eration when implementing MSI:

When to Trigger MSI There are two options to trigger
the MSI process (first invocation while trying to schedule
the switch case):

1. Time Offset. Start MSI when the current time during exe-
cution is some fixed amount of time, X , from the time at
which the nominal switch case is scheduled to start in the
current schedule.

2. Switch Ready. Start MSI when an activity has finished ex-
ecuting and the nominal switch case activity is the next
activity scheduled to start (shown in Figure 8).



(a) MSI has not yet begun. Currently, the
nominal switch case, B1, is scheduled.

(b) MSI begins. Scheduling the highest
level switch case, B3, prevents D from
being scheduled. Therefore, try B2.

(c) B2 is successfully scheduled along with the
other mandatory activities so MSI is complete.

Figure 7: Order of MSI Invocations.

(a) B1 is the nominal switch case. Since
an activity has not finished executing and
B1 is not the next activity, MSI cannot
begin yet.

(b) Since A finished executing early, and
B1 is the next activity, the MSI process
can begin.

Figure 8: MSI Switch Ready.

Spacing Between MSI Invocations If the highest level
switch case activity is not able to be scheduled in the first in-
vocation of MSI, then the scheduler must be invoked again.
We choose to reschedule as soon as possible after the most
recent MSI invocation. This method risks over-consumption
of the CPU if the scheduler is invoked too frequently. To
handle this, we may need to rely on a process within the
scheduler called throttling. Throttling places a constraint
which imposes a minimum time delay between invocations,
preventing the scheduler from being invoked at too high of a
rate. An alternative is to reschedule at an evenly split, fixed
cadence to avoid over-consumption of the CPU; we plan to
explore this approach in the future.

Switch Case Becomes Committed In some situations, the
nominal switch case activity in the original plan may be-
come committed before or during the MSI invocations as

shown in Figure 9. An activity is committed if its scheduled
start time is between the start and end of the commit window
(Chien et al. 2000). A committed activity cannot be resched-
uled and is committed to execute. If the nominal switch case
remains committed, the scheduler will not be able to elevate
to a higher level switch case.There are two ways to handle
this situation:

1. Commit the activity. Keep the nominal switch case activ-
ity committed and do not try to elevate to a higher level
switch case.

Figure 9: Switch case is committed during MSI. Tcurr is
the current time during execution. MSIstart is the time at
which MSI begins. The nominal switch case, B1, is commit-
ted when MSI begins.

2. Veto the switch case. Veto the nominal switch case so that
it is no longer considered in the current schedule. When an
activity is vetoed, it is removed from the current schedule
and will be considered in a future scheduler invocation.
Therefore, by vetoing the nominal switch case, it will no
longer be committed and the scheduler will continue the
MSI invocations in an effort to elevate the switch case.

Handling Rescheduling After MSI Completes but before
the Switch Case is Committed After MSI completes,
there may be events that warrant rescheduling (e.g., an activ-
ity ending early) before the switch case is committed. When
the scheduler is reinvoked to account for the event, it must
know which level switch case to consider. If we successfully
elevated a switch case, we choose to reschedule with that
higher level switch case. Since the original schedule gener-
ated by MSI with the elevated switch case was in the past
and did not undergo changes from this rescheduling, it is
possible the schedule will be inconsistent and may lead to
complications while scheduling later mandatory activities.
An alternative we plan to explore in the future is to disable
rescheduling until the switch case is committed. However,
this approach would not allow the scheduler to regain time
if an activity ended early and caused rescheduling.

Empirical Analysis
We evaluate the above methods ability to schedule preferred
activities in a switch group on inputs are derived from sol
types. Sol types are currently the best available data on ex-
pected Mars 2020 rover operations (Jet Propulsion Labora-
tory 2017a). In order to construct a schedule and simulate
plan execution, we use a ground testbed Linux workstation
environment, designed to produce the same schedules as the
operational scheduler but running cases much faster.

Each sol type contains between 20 and 40 activities. Data
from the Mars Science Laboratory Mission (Jet Propulsion
Laboratory 2017b; Gaines et al. 2016a; 2016b) indicates that



activity durations were quite conservative and completed
early roughly 70% or nominal duration. However, there is
a desire by the mission to operate with a less conservative
margin to increase productivity. In our model to determine
activity execution durations, we choose from a normal dis-
tribution where the mean is 90% of the predicted, nominal
activity duration. The standard deviation is set so that 10%
of activity execution durations will be greater than the nom-
inal duration. For our analysis, if an activity’s execution du-
ration chosen from the distribution is longer than its nom-
inal duration, then its duration is set to be the nominal du-
ration to avoid many complications which result from ac-
tivities running long (e.g., an activity may not be scheduled
solely because another activity ran late). Detailed discussion
of this is the subject of another paper. We do not explicitly
change other activity resources such as energy and data vol-
ume since they are generally modeled as rates and changing
activity durations implicitly changes energy and data volume
as well.

We create 10 variants derived from each of 8 sol types by
adding one switch group to each set of inputs for a total of
80 variants. The switch group contains three switch cases,
Anominal, A2x, and A4x where dA4x = 4 × dAnominal

and
dA2x = 2× dAnominal

.
In order to evaluate the effectiveness of each method, we

scoring how many and what type of activities are able to
be scheduled successfully. The score is such that the value
of any single mandatory activity being scheduled is much
greater than that of any combination of switch cases (at most
one activity from each switch group can be scheduled).

Each mandatory activity that is successfully scheduled,
including whichever switch case activity is scheduled, con-
tributes one point to the mandatory score. A successfully
scheduled switch case that is 2 times as long as the original
activity contributes 1/2 to the switch group score. A suc-
cessfully scheduled switch case that is 4 times as long as
the original, nominal switch case contributes 1 to the switch
group score. If only the nominal switch case is able to be
scheduled, it does not contribute to the switch group score
at all. There is only one switch group in each variant, so
the maximum switch group score for a variant is 1. Since
scheduling a mandatory activity is of much higher impor-
tance than scheduling any number of higher level switch
case, the mandatory activity score is weighted at a much
larger value then the switch group score. In the follow-
ing empirical results, we average the mandatory and switch
groups scores over 20 Monte Carlo runs of execution for
each variant.

We compare the different methods to schedule switch
cases over varying incoming state of charge values (how
much energy exists at the start) and determine which meth-
ods result in 1) scheduling all mandatory activities and 2)
the highest switch group scores. The upper bound for the
theoretical maximum switch group score is given by an om-
niscient scheduler – a scheduler which has prior knowledge
of the execution duration for each activity. Thus, this sched-
uler is aware of the amount of resources that will be available
to schedule higher level switch cases given how long activ-
ities take to execute compared to their predicted, nominal

duration. The input activity durations fed to this omniscient
scheduler are the actual execution durations. We run the om-
niscient scheduler at most once per switch case. First, we try
to schedule with only the highest level switch case and if
that fails to schedule all mandatory activities, then we try
with the next level switch case, and so on.

First, we determine which methods are able to success-
fully schedule all mandatory activities, indicated by the
Maximum Mandatory Score in Figure 10. Since schedul-
ing a mandatory activity is worth much more than schedul-
ing any number of higher level switch cases, we only com-
pare switch group scores between methods that successfully
schedule all mandatory activities.

Figure 10: Mandatory score vs Incoming SOC for various
Methods to Schedule Switch Cases

Figure 11: Switch Group Score vs Incoming SOC for Meth-
ods which Schedule all Mandatory Activities

In order to evaluate the ability of each method to schedule
all mandatory activities, we also compare against two other
methods, one which always elevates to the highest level



switch case while the other always elevates to the medium
level switch case. We see in Figure 10 that always elevat-
ing to the highest (3rd) level performs the worst and drops
approximately 0.25 mandatory activities per sol, or 1 activ-
ity per 4 sols on average while always elevating to the sec-
ond highest level drops close to 0.07 mandatory activities
per sol, or 1 activity per 14 sols on average. For comparison,
the study described in (Gaines et al. 2016a) showed that ap-
proximately 1 mandatory activity was dropped every 90 sols,
indicating that both of these heuristics perform poorly.

The MSI approaches which veto to handle the situation
where the nominal switch case becomes committed before
or during MSI drop mandatory activities. Whenever an ac-
tivity is vetoed, there is always the risk that it will not be
able to be scheduled in a future invocation, more so if the sol
type is very tightly time constrained, which is especially true
for one of our sol types. Thus, vetoing the nominal switch
case can result in dropping the activity, accounting for this
method’s inability to schedule all mandatory activities. The
MSI methods that keep the nominal switch case committed
and do not try to elevate to a higher level switch case suc-
cessfully schedule all mandatory activities, as do the guard
methods.

We see that Fixed Point guard, Sol Wide guard, and two
of the MSI approaches are able to successfully schedule all
mandatory activities. As shown in Figure 11, the Sol Wide
guard and MSI approach using the options Time Offset and
Commit result in the highest switch group scores closest to
the upper bound for the theoretical maximum. Both MSI ap-
proaches have increasing switch group scores with increas-
ing incoming SOC since a higher incoming energy results in
more energy to schedule a consumptive switch case during
MSI. The less time there is to complete all MSI invocations,
the more likely it is for the nominal switch case to become
committed. Since we give up trying to elevate switch cases
and keep the switch case committed if this occurs, fewer
switch cases will be elevated. Because our time offset value
is quite large (15 min), this situation is more likely to occur
using the Switch Ready approach to choose when to start
MSI, explaining why using Switch Ready results in a lower
switch score than Time Offset.

The Fixed Point guard results in a significantly lower
switch case score because it checks against a SOC constraint
at a particular time regardless of what occurs during execu-
tion. Even if a switch case is being attempted to be sched-
uled at a completely different time than TNominal in Figure
3 (e.g., because prior activities ended early), the guard con-
straint will still be enforced at that particular time. Since we
simulate activities ending early, more activities will likely
complete by TNominal, causing the energy level to fall un-
der the Minimum SOC Guard value. Unlike the Fixed Point
guard, since the Sol Wide guard checks if there is sufficient
energy to schedule a higher level switch case at the time the
scheduler is attempting to schedule it, not at a set time, it is
better able to consider resources regained from an activity
ending early.

We also see that using the Fixed Point guard begins to re-
sult in a lower switch group score with higher incoming SOC
levels after the incoming SOC is 80% of the Maximum SOC.

Energy is more likely to reach the Maximum SOC constraint
with a higher incoming SOC. The energy gained by an ac-
tivity taking less time than predicted will not be able to be
used if the resulting energy level would exceed the Maxi-
mum SOC. If this occurs, then since the extra energy cannot
be used, the energy level may dip below the guard value in
Figure 4 at time TNominal while trying to schedule a higher
level switch case even if an activity ended sufficiently early.

Related Work, Discussion, and Future Work
Just-In-Case Scheduling (Drummond, Bresina, and Swan-
son 1994) uses a nominal schedule to determine areas where
breaks in the schedule are most likely to occur and produces
a branching (tree) schedule to cover execution contingen-
cies. Our approaches all (re)schedule on the fly although the
guard methods can be viewed as forcing schedule branches
based on time and resource availability.

Kellenbrink and Helber (Kellenbrink and Helber 2015)
solve RCPSP (resource-constrained project scheduling
problem) where all activities that must be scheduled are not
known in advance and the scheduler must decide whether
or not to perform certain activities of varying resource con-
sumption. Similarly, our scheduler does not know which of
the switch cases to schedule in advance, using runtime re-
source information to drive (re)scheduling.

Integrated planning and scheduling can also be consid-
ered scheduling disjuncts (chosen based on prevailing con-
ditions (e.g., (Barták 2000)), but these methods typically
search whereas we are too computationally limited to search.

The analysis described in this paper informed the M2020
project decision on switch group implementation, provid-
ing: (1) specific prototype implementations of all three ap-
proaches (e.g. specific insights into complexity of flight
implementation) and (2) specific evidence of relative per-
formance (runtime and schedule quality) of the three ap-
proaches. The Mars 2020 project ultimately selected the
MSI Time Offset method due to superior schedule quality
and moderate complexity implementation and validation.

There are many areas for future work. Currently the time
guard heavily limits the placement of activities. As we saw,
using preferred time to address this issue resulted in drop-
ping mandatory activities. Ideally analysis of start time win-
dows and dependencies could determine where an activity
could be placed without blocking other mandatory activities.

Additionally, in computing the guard for Minimum SOC
using the Sol Wide Guard, instead of increasing the guard
value by a predetermined fixed amount which could result
in over-conservatism, binary search via Monte Carlo analy-
sis could more precisely determine the guard amount. Cur-
rently we consider only a single switch group per plan, the
Mars 2020 rover mission desires support for multiple switch
groups in the input instead. Additional work is needed to
extend to multiple switch groups.

Further exploration of all of the MSI variants is needed.
Study of starting MSI invocations if an activity ends early
by at least some amount and the switch case is the next ac-
tivity is planned. We would like to analyze the effects of
evenly spacing the MSI invocations in order to avoid relying



on throttling and we would like to try disabling rescheduling
after MSI is complete until the switch case has been commit-
ted and understand if this results in major drawbacks.

We have studied the effects of time and energy on switch
cases, and we would like to extend these approaches and
analysis to data volume.

Conclusion
We have presented several algorithms to allow a very com-
putationally limited, non-backtracking scheduler to consider
a schedule containing required, or mandatory, activities and
sets of activities called switch groups where each activity
in such sets differs only by its resource consumption. These
algorithms strive to schedule the most preferred, which hap-
pens to be the most consumptive, activity possible in the set
without dropping any other mandatory activity. First, we dis-
cuss two guard methods which use different approaches to
reserve enough resources to schedule remaining mandatory
activities. We then discuss a third algorithm, MSI, which
emulates backtracking by reinvoking the scheduler at most
once per level of switch case. We present empirical anal-
ysis using input sets of activities derived from data on ex-
pected planetary rover operations to show the effects of us-
ing each of these methods. These implementations and em-
pirical evaluation are currently being evaluated in the con-
text of the Mars 2020 onboard scheduler.
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